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Abstract

We introduce a wearable system that uses EMG, ultrasound, and
audio features to support vocal muscle biofeedback in singing pitch
training. Through multi-phase evaluations with novice and ex-
pert singers, we demonstrate how physiological feedback enhances
vocal control, reveals skill differences, and informs predictive mod-
els for real-time guidance. Our findings highlight the potential of
muscle-acoustic sensing in embodied vocal learning.
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1 Problem Statement

Singing is a highly embodied skill that relies on complex coordi-
nation of internal physiological subsystems, including vocal fold
muscles, breath control, and resonance shaping [48, 54]. Unlike
many motor skills involving visible movement, the vocal mus-
cles are hidden from conscious perception, making it difficult for
singers—especially novices—to develop accurate muscle control
during pitch production. Traditional singing instruction primarily
relies on auditory feedback and verbal coaching [28, 63], which
often fails to provide actionable cues on internal laryngeal adjust-
ments and can overwhelm learners’ cognitive resources [52].
While recent advances in biofeedback have demonstrated the
value of physiological sensing for supporting embodied learning [18,
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46], most existing systems focus on external motor tasks or affec-
tive regulation [6, 7, 24]. Real-time biofeedback for singing remains
underexplored, particularly for capturing the fine-grained neuro-
muscular coordination involved in pitch control [14, 39, 60]. Met-
rics such as Electromyography (EMG) [4, 40], Ultrasonography
(USG) [3, 33], and Singing Power Ratio (SPR) [58, 62] show promise
for revealing vocal muscle activity and breath support. However,
integrated multimodal sensing systems that combine these mea-
sures into wearable, real-time feedback interfaces for vocal skill
acquisition remain scarce [38].

This research aims to address these gaps by developing multi-
modal wearable biofeedback systems that visualize internal vocal
muscle activity and breath dynamics. Through real-time physiolog-
ical feedback, the system seeks to make the "invisible" embodied
processes of singing accessible to learners, enabling more effective
training and refined control over vocal pitch. Specifically, we in-
vestigate whether EMG and USG can be used to capture different
levels of proficiency in singing and support singers of various skill
levels (RQ1). We further examine how EMG and USG perform in
training novice singers (RQ2), and how a portable EMG setup may
support professional singers in comparison to traditional feedback
methods (RQ3). Finally, we explore how an optimized USG interface
(RQ4), together with additional factors such as breath control, can
enhance vocal training for amateur singers.

2 Related Works

This work represents the first EMG and USG measurement tech-
niques on singing pitch. In this section, we review prior work in
vocal skill learning, muscle sensing technologies, and biofeedback
interface design, which together inform the development of our
multimodal feedback system for singing training.

2.1 Vocal Physiology and Pitch Control

Voice is a natural instrument in human singing. Widely adopted
pedagogical frameworks — such as Estill Voice Training (EVT) [48],
Speech Level Singing (SLS) [34], and Complete Vocal Technique
(CVT) [51], emphasize elements like breath control, pitch accuracy,
volume modulation, and rhythmic precision [63]. Among these,
Vocal pitch control plays a particularly central role, often linked to
the tension regulation in the vocal folds muscles [2, 30, 48, 54]. The
thyroarytenoid and cricothyroid muscles play key roles in pitch
production by adjusting vocal fold tension through movement of
the cricoid and arytenoid cartilages [4, 15, 23, 54], which changes
the fundamental frequency (F0) of the voice. Each note corresponds
to a specific FO, but what gives it character is not just pitch - it’s the
way sound is shaped by the vocal tract. As air travels from the vocal
folds to the lips, it resonates in the vocal tract, creating Formants


https://orcid.org/0000-0001-5095-533X
https://orcid.org/0000-0002-6129-7747
https://orcid.org/0000-0002-8989-6434
https://doi.org/10.1145/3714394.3750550
https://doi.org/10.1145/3714394.3750550
https://doi.org/10.1145/3714394.3750550

UbiComp Companion ’25, October 12-16, 2025, Espoo, Finland

- peaks in the sound spectrum shaped by the position of the lips,
tongue, and other articulator [30, 49]. These Formants determine
the timbre and perceived quality of the sound.

This is especially crucial in musical singing, where techniques
such as belting [12] demand precise and sustained high-pitch pro-
duction, supported by coordinated muscle engagement and sub-
glottal pressure control involving dominant thyroarytenoid activity
with limited cricothyroid elongation. These mechanisms form the
theoretical basis for our focus on pitch muscle sensing.

Despite clear physiological mechanisms, a major challenge in
vocal pedagogy remains: the lack of accessible, real-time feed-
back mechanisms that reflect muscle activity [63]. In the absence
of continuous expert coaching, most learners relies on auditory or
spectrographic evaluation [28, 32, 37], which may overlook subtle
muscle misalignments. Studies such as Yiu et al. [64] show that
muscle fatigue significantly affects EMG patterns during singing,
reinforcing the importance of direct muscular feedback in peda-
gogy. Therefore, emerging trends in vocal training have begun to
integrate technological innovations to offer more precise and in-
formative feedback to learners research [63]. This leads to the next
consideration: how vocal metrics can be used as effective input
signals for vocal training systems.

2.2 Acoustic and Muscle Sensing in Vocal

Scientific interest in the physiological basis of professional singing
dates back to Bartholomew’s pioneering work in 1934 [1], which
analyzed vibrato, pitch intensity, and the presence of high and
low formants in professional vocal production. Building on these
early insights, recent advances in acoustic analysis have enabled
more detailed processing of complex vocal performances using
microphone input [19]. Among the established acoustic metrics,
the Singing Power Ratio (SPR) has proven effective for assessing
vocal resonance and clarity—key qualities in classical and musical
singing [29, 50]. SPR captures the ratio of high-frequency to low-
frequency energy, typically between 2000-4000 Hz, and is strongly
correlated with professional-level vocal projection [58, 62], creat-
ing Singer’s Formant. Despite these advances, microphone-only
methods are limited in their ability to reveal the internal muscular
mechanisms that shape sound production.

Ultrasound stands out as a traditional yet potent modality for
visualizing muscle movements, including those involved in vocal
production [33, 36, 45]. Unlike laryngoscopy, which requires in-
serting equipment into the oral or nasal cavity, ultrasound offers
a more accessible and repeatable option for examining laryngeal
structures [3]. Clinically, laryngeal ultrasound has been applied
to assess vocal fold mobility, diagnose vocal fold paralysis, and
monitor recovery after surgery [33, 53]. Its ability to capture real-
time vocal fold oscillation during phonation makes it particularly
valuable for studying voice production [3].

In this research, we leverage ultrasonography (USG) not for di-
agnostic purposes, but as an interactive training tool that enables
singers to visualize their own vocal fold movements in real time.
However, applying ultrasound in training settings remains challeng-
ing, as real-time interpretation of laryngeal images requires clear
landmark extraction, stable probe positioning, and robust signal
processing [38]. Quantifying meaningful metrics such as vocal fold
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length, symmetry, and oscillation patterns often involves complex
image tracking and segmentation algorithms. These technical chal-
lenges motivate our ongoing work to optimize real-time USG-based
feedback interfaces for vocal training.

Recent advancements in wearable muscle sensing have enabled
real-time, non-invasive monitoring of vocal muscle activity, in-
troducing a new class of input for vocal training and assessment.
Among these, surface electromyography (SEMG) has emerged
as a prominent technique for measuring muscle engagement and
coordination. EMG has been widely used in both music and mo-
tor skill learning to distinguish expertise levels and capture fine
motor control [9, 14, 39]. Studies such as Pettersen et al. [39, 40]
demonstrated that professional singers activate neck and respira-
tory muscles differently compared to students, particularly under
high-pitch conditions. Such findings align with work by Visentin
and Shan [60], who reviewed EMG’s value for skill assessment,
biofeedback-based learning, and injury prevention in music con-
texts.

Emerging technologies such as Electromyography (EMG) and
ultrasonography have enabled researchers to examine vocal physi-
ology in greater detail. Existing research has explored various facets
of speech and vocal dynamics, including the correlation between ut-
tering vowels or sentences [65] and the engagement of speech mus-
cle, the use of pitch and EMG for omohyoid detection [61], analysis
of face and neck muscle movements during sentence speech [42],
ultrasonic techniques for capturing speech dynamics from tongue
movement to sound production [25]. Certain wearable designs
worn on the throat or chest offer a potential avenue for enhanc-
ing vocal performance, the development of a custom wearable
collar [43] for enhancing vocal performance, and the design of
breath-related soma for authentic vocal expression [10]. Despite
significant progress, a fully integrated sensing system specifically
tailored for detecting vocal pitch muscles remains absent. Neverthe-
less, the integration of EMG and ultrasound into practical, wearable
systems for real-time vocal analysis is still an area ripe for explo-
ration, with promising applications in both clinical settings and
vocal pedagogy.

Therefore, integrating electromyography (EMG) and ultrasonog-
raphy (USG) with acoustic metrics such as the Singing Power Ratio
(SPR) through wearable sensing systems offers a promising ap-
proach to vocal training, especially in mobile, real-world settings.
This dual-sensing method is particularly effective in collective learn-
ing group environments, where EMG visualizations remain reliable
despite ambient sound, and can be further enhanced with advanced
microphone-based audio processing to support on-the-go vocal
learning.

2.3 Design Biofeedback in Dynamic Contexts

Effective biofeedback systems for vocal training need to convert
EMG, USG and audio signals into interpretable, actionable in-
sights — especially in dynamic contexts. Gamified voice interfaces,
such as those supporting vocal therapy for Parkinson’s patients [26],
show how feedback and repetition can increase vocal loudness and
engagement. Traditional microphone-based tools, such as Celes-
tia [47] for amateurs and commercial platforms like SingStar [44]
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Figure 1: Proposed physiological data process method to quantify the singing skill using a wearable multimodal system.

for musician, offer real-time pitch-based scoring and visual feed-
back. While these systems improve user engagement and pitch
awareness, they focus solely on acoustic output and offer little
visibility into the underlying muscular control required for
vocal technique.

In contrast, embodied and interactive music systems have shown
strong potential for supporting physical awareness and expressive
control. BrainiBeats [5] translates biosignals like EMG and EEG
into generative musical output, linking emotion and performance.
Installations like The Music Room [35], The Throat III [55], and The
Vocal Corder [56, 57] enable users to shape vocal output through
bodily gestures, highlighting how feedback can shape expressive
control. Diaz [11] similarly argues that pitch-processing tools like
Auto-Tune have redefined perceptions of vocal clarity and expres-
sion, suggesting that feedback technologies do more than measure
— they influence what is considered correct or desirable in vocal
performance.

Recent research has explored how electromyography (EMG) can
support such feedback systems by providing real-time data on mus-
cle activation. Systems like FitBack [20] and MappEMG [41, 59]
deliver visual or haptic muscle feedback, enhancing posture and
technique learning in sports and music. Devices such as BITalino
allow these feedback methods to extend beyond laboratory set-
tings into classrooms, home practice, or stage rehearsals. Karolus
et al. [20] showed that EMG feedback improved posture awareness
in non-expert users, while Gagnon et al. [14] found that expert
and novice muscle coordination patterns could be distinguished via
EMG sensing. Beyond voice, EMG has also enabled expressive con-
trol in instrument learning—such as pitch modulation in piano [21]
and chord recognition in guitar [22] — demonstrating its versatility
in motor-based musical interaction.

Overall, these systems demonstrate how muscle sensing and feed-
back can support on-the-go, embodied learning in real-world
musical contexts—laying the groundwork for vocal-specific appli-
cations that integrate both physiological and acoustic feedback.
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3 Methodology

This research adopts a Design Science Research (DSR) approach [16,
17] to guide the iterative development of a multimodal wearable
system for vocal pitch training. The DSR framework integrates
theoretical insights from vocal physiology, sensing technologies,
and skill learning with the practical challenges of system design.

3.1 Design Science Framework

This research follows the Design Science Research (DSR) three-cycle
model. The relevance cycle addresses the lack of internal muscle
feedback in singing practice. The rigor cycle builds on studies in
vocal physiology, sensing (EMG, USG, SPR), and embodied learning.
The design cycle guides the system’s development and evaluation
to support vocal training.

3.2 Hardware Sensing Setup

We designed a multimodal sensing system targeting laryngeal mus-
cle control. Surface electromyography (EMG) was captured using
Delsys Trigno Wireless sensors positioned between the thyroid car-
tilage and the cricoid cartilage, with signals sampled at 2000 Hz and
downsampled to 30 Hz for processing. Vocal fold dynamics were
visualized using a CONTEC CMS600P2 B-mode ultrasound sys-
tem, which recorded ultrasound images at 3.5 MHz and 30 frames
per second. Synchronized high-quality audio was recorded using
Shure SM7B or wireless microphones, depending on the experimen-
tal context. In addition, we plan to integrate wearable respiratory
belts into the system to capture breath dynamics as an additional
physiological parameter.

3.3 Data Processing and Feature Extraction

EMG Processing. Signals are denoised with a moving average
filter (10 ms window), followed by Hilbert transform to extract the
amplitude envelope. Muscle stability is quantified using shimmer-
inspired metrics [13]:
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Figure 2: Left: EMG sensor placement and visualization of a sample of raw EMG data accompanied by muscle/cartilage position
annotations. Right: Positioning of the ultrasonography probe and sample of raw ultrasound imaging data accompanied by

muscle/cartilage position annotations.

where A; is the EMG envelope at time ¢.

Ultrasound Processing. USG frames are manually annotated with
five vocal fold landmarks following prior work [27]. Landmarks are
automatically tracked using Kanade-Lucas-Tomasi (KLT) optical
flow to compute vocal fold length dynamics.

Audio Feature Extraction. Singing Power Ratio (SPR), pitch (F0),
MFCCs (Mel-frequency cepstral coefficients), and other spectral
features are extracted for acoustic analysis and estimated modeling.

3.4 Research in Practice

3.4.1 Dataset Collection and Results (RQ1). We collected the Vocal
Cord Sensing Dataset (VCSD) from 16 singers with varying skill
levels to evaluate whether EMG and USG can distinguish novice
and expert muscle activity. The dataset includes around 1.5 hours
of synchronized EMG and USG recording across controlled pitch
exercises. Repeated-measures ANOVA resulted that both EMG sta-
bility and USG vocal fold length differentiate singing proficiency
levels [9].

3.4.2  Phase 1: Biofeedback for Novices (RQ2). We implemented
real-time visual biofeedback interfaces based on expert reference
data to guide novice singers (N=12) through vocal training sessions.
Three conditions were compared: (1) Baseline (audio feedback only);
(2) EMG feedback (muscle stability visualization); (3) USG feedback
(vocal fold motion visualization).

The study revealed that EMG enhanced perceived controllability
but induced cognitive load during real-time control. USG provided
clearer visualization of vocal fold dynamics, facilitating vocal length
control improvements, though users reported probe usability chal-
lenges.

3.4.3 Phase 2: Portable EMG-Microphone Setup for Experts (RQ3).
To enable mobile training scenarios, we developed a portable EMG-
microphone system evaluated with 16 professionally trained singers
during live stage rehearsal. EMG muscle engagement and SPR vocal
power showed strong correlations among expert performers, con-
firming that EMG-SPR sensing can capture nuanced vocal control
in performance contexts [8].

3.4.4 Phase 3: Estimated Ultrasound Visualization and Breath Inte-
gration (RQ4 - Current Stage). We are developing predictive models
to estimate ultrasound-based vocal fold motion from audio fea-
tures (SPR, MFCC, F0) using MLP and Transformer-based neural
networks. Additional data were collected from 9 expert singers.
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Building upon prior work [31], we plan to integrate breath sensing
into the system pipeline to provide real-time multimodal feedback
on breath-muscle coordination during singing.

4 Evaluation

We conducted multi-phase evaluations to test our system design.
First, we used the VCSD dataset from 16 singers to confirm that
EMG stability and vocal fold length (USG) could distinguish novices
from experts [9]. In Phase 1, 12 novice singers tried real-time EMG
and USG feedback. EMG helped with control but increased mental
load, while USG improved vocal fold length control but required
more effort to use. NASA-TLX showed both methods felt more
demanding than audio-only training, especially USG. In Phase 2, 15
professional singers used a portable EMG-microphone system dur-
ing rehearsals. Results showed experts had stronger EMG-SPR cor-
relations, suggesting the system captures detailed muscle-acoustic
coordination [8]. Currently, in Phase 3, we are training models to
predict vocal fold movement from audio features (SPR, pitch, MFCC)
using data from 9 experts, and testing the predictive interface with
20 amateur singers, including breath feedback integration.

5 Expected Contribution

This research contributes to both wearable vocal sensing and em-
bodied skill learning. First, we propose and validate a novel mul-
timodal wearable system that integrates EMG, ultrasound, and
audio-based metrics for real-time vocal pitch training. Second, we
also release a large dataset (VCSD) of synchronized muscle, vocal
fold, and audio data from singers of different skill levels. Third,
our iterative studies provide empirical evidence on how different
sensing modalities affect vocal training, highlighting trade-offs be-
tween interface intuitiveness, controllability, and cognitive load.
Fourth, we develop predictive ultrasound models using audio fea-
tures to simplify sensing hardware while preserving physiological
feedback. Finally, this work offers design insights into how biofeed-
back systems can support embodied skill learning, with potential
implications for voice pedagogy, rehabilitation, and broader HCI
applications involving internal motor processes.
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